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A» an appVoxlnatlon to tht probl«« of dttcmlnlng th« 

of J(y) • ,/     ^(x,y)dt, «h«r« x and y ar« connacttd by otrtaln 
o 

rtlatlom, na najL conaldar tha quaatlon of dataralnlnf tna 

naxlnum of J( • y \ - £ F(x(k). y(k))# «hara x(k) - x( «i 
\)   k-0 w 

y(k)  - y( j|-  ).    9fi thla papar j^ conaldarsltha convarganca of 

). 

tna diacrata aus aa N—«a> , Indapandantly of tha contlnuoua 

procaaa. Convarganca It attabllahad, ualng tha functional 

aquation tachnlqua of tha thaory of dynaalc programing, undar 

«aakar conditions than thota raqulrad by tha claaalcal calculus 

of variations. 

i 
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PWCTIOMAL BQUATIOMS IN THE THEORY OF 
DYNAMIC PROQRAMUNO—VI 

A DIRECT CONVERGENCE PROOF 

By 
Richard B«llm«n 

bl.  Introduction 

A clase of varlitlonal problems arising frt.usntly in 

both theory and application Invclvt tha maximization of a 

functional of tne form 

T 
(1) J(y) - /  F(x,y)dt, 

o 

subject to relations of the form 

(2) (•) at - O(x.y). x(0) - c. 

(t)  h^x.y) < 0, i . 1. 2, . . ., K. 

Here x and c are H-dlmenslonal vectors, while y is an 

H-dlmenslonal vector function.  The maximization is over y. 

Since solutions of problems of this type are only in rare 

Instances obtainable In explicit form, recourse must be had 

to some ty^e of approximate solution if «e are interested 

in numerical results.  A method going back to Euler consists 

of approximating to the Integral in (l) ty a sum of the form 

n 
(3) Ji(y) - i AF(x(k), y(k)), 

k-C 

and to the relations In (?) by the relations 
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(4)      (a) x(k>l)-x(k)^0(x(k),y(k)).x(0).c.k^).l,....n, 

(b) R1(x(k).y(k))^0, 

«h«r« 

(b) (a) A - T/n, 

(b) x(k) » x(kT/n). y(k) - y(kT/n). 

Undtr various assumption! concerning the functions f, 

Q  anJ R, it can bt shown that 

(6) 11«   «ax Ji(y) . *ax J(y), 
n—xx»  jy; y 

or 

(7) Urn Max «Myj • Sup J(y) . 
n—«D (y i y 

Here the maximization on the left-hand side Is over all 

(n + 1)-dlmensional sequences [y(0). y(1),•..,y(N)]. 

An essential feature of the previous proofs of results 

of this nature is the use of the fonsulation of the continuous 

varlstional process and the existence of a solution.  A proof 

of tnis type requires relatively strong assumptions concerning 

the benavior of V  and 0.  In this paper we wish to begin the 

study oi convergence proofs which are independent of the continuous 

version, and depenJ only upon the discrete version. 

We are interested in imposiag relatively weak conditions 

upon the functions F(x,y) and Q(x.y) which will permit us to 



a 

concludt that tht limit 

(8)      11m  Max J,(y) - J, 

•xlate aa n—K» through aom« atqutnca of Intagara.  It Is 

probably true that thla limit Mill not axiet under the sole 

aaaumptlon or continuity of P and 0, togethar «ith some aimple 

conatraint such aa the uniform boundedneee or y, although we 

know of no example of this. We find it necaeaary to impose 

Llpachltt conditiona of the form |P(x,y) - F(r,y)| ^ ktU - «I 
2 

for all admissible y, where a  4- a > 1.  Again we do not know 

whether thla reault is beat poaaible. 

Apart from the fact that the convergence of the above 

expression can be established by the methods we present below 

under lignter conditions than are Imposed in the classical 

calculua of variations, the Interest in thase results lies in 

the fact tnat the techniques we employ mpen a path to a similar 

treatment of other types of varlatlonal problems. 

As we shall see in subsequent papera, elgenvalee problems 

of one—dimensional and multl-dimenaional type, as well aa multi- 

dimensional varlatlonal problems of other types, may be treated 

by these metnods. 

Furthermore, multi-stage games of continuous type, sucn 

aa purauit games, may also be discussed In tnls fasnion, 

cf. [?].  Here tnere is no classical theory to guide our 

analysis, not even a rigorous formulation of  the contlnuoua 

process, nor even the concept of a aolutlon. 
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In what follows, vt shall r«ly upon th« functional •quatlon 

approach of tnt thaory of dymualc progrmMilng, [l], appllad 

to tha dlacrata maximization problam. Tha rasults of this papar 

ara eelf-contalnad, and raquira no pravloua knowladga of althar 

varlatlonal thaory or dynamic programing. 

Finally, lat ua nota in paaalng, that tha mathod usad 

affords a na« approach to tha computational aolutlon of varla- 

tlonal problame, and a na« approach to tha datarmlnatlon of 

analytic propertlas of tha solution auch aa monotonlclty, 

concavity, and to on. 

^2.  Functional Equatlona 

In tha saction following this, wa shall discuss varioua 

conditions which wa can impoaa upon F, 0 and R in ordar to 

anaure tha axlatanca of a maximum in tha dlacrata varslon. 

In tnls section let us procaad upon tha assumption that tha 

maximum is attained, and dariva tha recurrence relationa «a 

shall employ to establish convergence. 

It Is clear to begin with that the maximum of Ji(y)f 

as defined by (1.3), will be a function only of c and n.  Lat 

us keep ^ fixed, equal to T/n, and define, for k - 0, 1, 2, ...» n, 

the sequence of functions 

k 
(1)      f (c) - Max f A I F(x(j),y(j))], 

■yt    J-0 

where x(j)  and  y(j)  are  subject *X) the relationa 
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(2) (a) x(j*l).x(j)>A0(x(j).y(j)),x(0).c,J-O,1.2....,k, 

(b) R1(x(j)fy(j))^0, k-1.2,...,K, 

and the aaxlnlzation is now over th« finite set of vectors 

tr(0),y(l) y(k)J. 

Let us no« consider this msxinlsstion prcble« ss an n-stage 

decision process, Mitn the state variables c and k.  Eaploying 

the principle of optlmallty, cf. [ij, it ie essy to derive 

the recurrence relations 

(3) f.MO-Hax  [AF(c.y(0))>f (c^OCc,y(0))], 
* l        y(0) K 

with 

(4) f (c) - Max AP(cty(0)). 0    y(o) 

The vector y(0) ie to be chosen in each case subject to 

the constrsints 

(5) ^(c.yCO)) £ 0, 1 - 1, 2, ..., K. 

The remainder of the convergence proof will be based upon 

this recurrence relation without further reference to its source. 

^3.  Conditions Upon F, 0 and R 

Since the method «e shall employ is independent of the 

diaensiona of the vectors x and >, there is no loea of 

generality in taking x and y to be scalar ;uantities.  This 

will allow us to substitute the usual absolute value notation 
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for th« «or« dl»tractIn« nom notation. 

Wo ohall aBsuso that F(x,y) and 0(zfy) aro eontinuoua 

functlone Jointly In tho varlabloa x and y In ooato boundod 

roglon of tht (x,y)-plana. Furthoraor», In ordor to onauro 

that x(k) dots not Incroaaa too rapidly, •• »hall lapoaa a 

conatralnt of th» form 

(1) tO(x.y)] ^ a(y)|x| ♦ b(y). 

upon G(x,y). 

Th« point of graattat Intaraat . < tha typa of constraint 

to be Imposed upon y.  If «a ramova all conatralnta of tha 

form R.Cx.y) < 0, «a ara In tha raalm of claaalcal theory. 

If «a Impoae constraints sueh as 

(2) -0D<mi<y^m«<<X) 

or 

(3) 0 ^ y ^ x 

a constraint which occurs naturally In various clasaaa of multi- 

stage allocation processes,  «e enter a region «here relatively 

little has  been done  in the classical  theory apart  from the 

establishment of various  types of existence and uniquaneaa 

theorems.     Since there are greater analytic difficulties In 

the way of  analytic  solutions in the  case «here constraints ara 

present,   which means a greater dependence upon numerical  teohnlquea, 

«e shall  concentrate upon this case. 
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If M« itt y • vx, we ••• that (3) becomes 

(4) 0 1 v £ 1. 

a conttraint of the type given in (2). 

Finally «e have to Impose some conditions on the modulus 

of continuity of the functions F(zty) and 0(x,y}. The simplest 

Is a uniform Llpschltc condition of the type 

(5) |F(*i,y) - F(xs,y)l ^ klxi — x,|a. 

for some k > 0 and a satisfying 0 < a < 1, for all y satisfying 

(2) and X|, x« lying In some fixed Interval [c,cj. For our 

convergence proof «e shall Impose a further condition upon a, 

given below In (l) of $4. 

^4.  Statement of the Principal Result 

The main result we shall establish Is 

Theorem.  Assume that 

(l)      (a)  y satisfies a constrsint -OD< mi < y < m« < oo . 

(b) F(x,y) and 0(x,y) are Jointly continuous in x 
and y in a region of tne farm -ci < x < Ci, 
at ^ y < m«, and satisfy (jT1*)  in thi8"'regiont 
for an i satisfying sc ♦ s > 1. 

(c) )0(x,y)i < at|x| ♦ b! In this region. 
Under these conditions,   the sequence   ifn(c)    converges to 

a function f(c,T)  as n—m>   throuxh the sequence of vslues  i2 ; , 

unlfonaly  In an Interval   [—c«,ct]c[-c i,ct],   for T aufficlentiy 

111  dependent upon the constants appearing above. 
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The positive solution of s2 4 s • 1 is s - (>I ♦/5)/2-.62. 

05.    A Lemma 

We shell repeatedly use the following result. 

1. I^t a(c,v), a'Cc.v), f(c,v) and f'Ccv) be continuous 

functions of v for c and v In some re£lon D. Define 

(1) P(c) - *ax [a(c.v) ♦ f(c,v)] 
v<D 

oCc') - «ax  [a'lc'^v«) ♦ f'Cc'.v')]. 
v»<D 

Then 

(2) |P(c)-G(c')l^«ax [u(c.v)^a»(c'fv')K|f ^.v)-f • (c« .v) |] 

Proof:   Let  v  - v(c)   be a value of v which yields the maximum 

In the expression for P(c),  and v*  - v^c*),  the corresponding 

expression for v'.     Then 

(3) P(c)  - a(c,v)  ♦ f(c.v)  > a(c.v«)  ♦ f(c,v'), 

G(c') - a'Cc'.v«) ♦ f•(c^v,) > s'Cc'.v) ♦ f'Cc'.v). 

Prom these inequalities MS derive the further Inequalities 

(M)      P(c) - 0(0') > a(c,v') - a'(c>') ♦ f(c,v») - f'Co'.v») 

^ a(c,v) - a'(c'.v) 4 f(c,v) - f'(c\v). 

from which we obtain 
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(2.4), under the condition» of tht th»or— of ^4. For k • 

0, 1, . . ., n, wt hav 

(1) |fk(u) - fk(-)| < m|u - -I*. 

for u and w in tht n - k  •»■ 1)      infnrai^   whtrt a it  indapandtnt 

of  u,   •,  k or A. 

Proof:     Tht proof «111  procod by an Induction on k.    M« hav« 

(2) f  (u)   - Max AF(u,y), 
y 

f  («)  - Max ^(-.y1), 
0 >•' 

wn«re  j  and y'   satisfy tht constraints  at £ y,  y* £ m*. 

Applying Ltaoi«  1,   wt obtain tht  Intquallty 

(3) |f0(u)  -  f0(-)|  ^ Max AiF(u.y)  - F(«.y)| 
y 

^ K|u - -|a. 

Aeffune that  «t  havt  dtaonstrattd  that 

C») Ifk(u)   -  fk(-)|   <, ^Alu  - -i*. 

for k - 0, 1, 2, .-..L, for u and « in tht (n - k - l)*1 

Interval. Turning to tht rtcurrtnct rtlatlon (2.5), and applying 

Ltmma I, «t obtain the rtlatlon 

(5)       'fk4l(^-fk>l^H ^^UlF(u,y)-f;-.y)| 
y 

♦ |fk(u^0(u.y))-fk(-^0(«,y))|]. 
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Itngth t.     Let     f   (c)»  denote  the  eequtnct of returns fro« the 

^-procees,   as  defined by the recurrence relations  of   (2.3) 

end   (2.4),   and  let  'g  (c)    denote  the tequence of  returns fron 

the 2A-proce88. 

Let  us  now  define the   following Intermediate  process. 

The Interval   lengtn Is A,   but   the policies are  restricted to 

those which employ the  same  y-^alue at the points  2kA and 

(2*M)A.     Let    h0. (c)i   denote  the  sequence of returns obtained 

in this   way.     Then 

(1) h0(c)   - Maji AF(c.y), 
y 

ht(c)   - Max   L^(c,y)   ♦ AF(c  ♦ AO(c.y),y) 
y 

♦ ho(c   ♦ AO(c.y)  ♦ äO(C  ♦ AO(c,y),y)], 

hrk42(c)   •  «ax   [AP(o.y)   ♦  AF(c  ♦ A0(c.y),y) 

♦h2k(c*AG(c,yMG(c   ♦ AO(c,y),y)]. 

Here y Is sutject to t^e constraint «i < y < n*. 

It Is clear that 

(?)      hok(c) < f2k(c). k - 0, 1. 2, ... 

Let  us  now   compare  h2k(c)   mith  gk^c^ 

It   is  easy  to  show  that  the  sequence   <h     {c}\   satisfies 

the  same  type   of   uniform  Llpschltz   condition as   that  which we 

derived   for   <vf   (e)t.     Hence  we may  write 
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610.     A Result on Convrgtnce 

L«t  us  eittbller.  the  following result 

a  k.     Let  •a   [ be a  sequence  satisfying the  following 

conditions: 

(1) (a)     «   > M > an  > an - bn, 

(b)     b    > 0,   lb    <  OD . 

Then the sequence converges. 

Proof:  It Is clear that the sequence is unlfopmly bounded from 

below.  Let X| and x2 be two distinct cluster points, with 

Um converging to %%,  and  uN  converging to x».  Let Ht < Ni < Na, 

witn uM , uM close to xit and ukI close to x«.  Then, on one 
n | ng Tig 

hand , 

(2) UN,   - "«,   >      ■I       *"   >    -£' 

and  on  the   other f.and, 

Ma 
! i\ > -    Z       a.    > -c  • 

'*• N| k-N, 

Since t   can be waJe nrbitrsrliy small, we nave xi « xa- 

§11  Conclusion of the Proof 

Applying Lemma *♦, we see that u (c) converges as r—»OD to 

a function f(c,s), «here s   - kT/n.  Taking n sufficiently large, 

we obtain approximations to a continuous function of s, f(c,s). 
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